811 research outputs found

    Optoelectronic Sensor System for Guidance in Docking

    Get PDF
    The Video Guidance Sensor (VGS) system is an optoelectronic sensor that provides automated guidance between two vehicles. In the original intended application, the two vehicles would be spacecraft docking together, but the basic principles of design and operation of the sensor are applicable to aircraft, robots, vehicles, or other objects that may be required to be aligned for docking, assembly, resupply, or precise separation. The system includes a sensor head containing a monochrome charge-coupled- device video camera and pulsed laser diodes mounted on the tracking vehicle, and passive reflective targets on the tracked vehicle. The lasers illuminate the targets, and the resulting video images of the targets are digitized. Then, from the positions of the digitized target images and known geometric relationships among the targets, the relative position and orientation of the vehicles are computed. As described thus far, the VGS system is based on the same principles as those of the system described in "Improved Video Sensor System for Guidance in Docking" (MFS-31150), NASA Tech Briefs, Vol. 21, No. 4 (April 1997), page 9a. However, the two systems differ in the details of design and operation. The VGS system is designed to operate with the target completely visible within a relative-azimuth range of +/-10.5deg and a relative-elevation range of +/-8deg. The VGS acquires and tracks the target within that field of view at any distance from 1.0 to 110 m and at any relative roll, pitch, and/or yaw angle within +/-10deg. The VGS produces sets of distance and relative-orientation data at a repetition rate of 5 Hz. The software of this system also accommodates the simultaneous operation of two sensors for redundanc

    Gibbs Sampling with Low-Power Spiking Digital Neurons

    Full text link
    Restricted Boltzmann Machines and Deep Belief Networks have been successfully used in a wide variety of applications including image classification and speech recognition. Inference and learning in these algorithms uses a Markov Chain Monte Carlo procedure called Gibbs sampling. A sigmoidal function forms the kernel of this sampler which can be realized from the firing statistics of noisy integrate-and-fire neurons on a neuromorphic VLSI substrate. This paper demonstrates such an implementation on an array of digital spiking neurons with stochastic leak and threshold properties for inference tasks and presents some key performance metrics for such a hardware-based sampler in both the generative and discriminative contexts.Comment: Accepted at ISCAS 201

    Racial/Ethnic Differences in Bone Mineral Density of Young Adults

    Get PDF
    An estimated 1.5 million people suffer a bone disease-related fracture every year. Most work investigating bone mineral density (BMD) focuses on post-menopausal females but a report from the Surgeon General in 2004 stated that of particular concern are men, racial and ethnic minorities, poor individuals, individuals with disabilities, and individuals living in rural areas. The purpose of this study was to examine the racial/ethnic differences in bone mineral density of young adults and to investigate any correlations with variables suggested to influence BMD. BMD was assessed at a younger age than most studies based on the assumption that osteoporosis is a pediatric disorder that manifests in old age. Whole-body BMD, percent body fat (BF), fat mass (FM), and lean mass (LM) of 103 college-aged Blacks, Whites, and Hispanics (18 – 34 years of age) were measured using a Lunar Prodigy Dual Energy X-ray Absorptiometry (DEXA). Blacks and Whites were taller than Hispanics. Blacks had higher BMD than Whites and Hispanics. Blacks and Whites had higher t-scores than Hispanics. Weight and LM correlated with BMD for all three groups. Height correlated with BMD for Blacks only. FM correlated with BMD for Hispanics only. In conclusion, BMD is suggested to be higher in Blacks than Whites and Hispanics. LM is suggested to be an important component of bone health. It is important to stress resistance training for building and maintaining bone health throughout life

    Organizational factors associated with readiness to implement and translate a primary care based telemedicine behavioral program to improve blood pressure control: the HTN-IMPROVE study

    Full text link
    Abstract Background Hypertension is prevalent and often sub-optimally controlled; however, interventions to improve blood pressure control have had limited success. Objectives Through implementation of an evidence-based nurse-delivered self-management phone intervention to facilitate hypertension management within large complex health systems, we sought to answer the following questions: What is the level of organizational readiness to implement the intervention? What are the specific facilitators, barriers, and contextual factors that may affect organizational readiness to change? Study design Each intervention site from three separate Veterans Integrated Service Networks (VISNs), which represent 21 geographic regions across the US, agreed to enroll 500 participants over a year with at least 0.5 full time equivalent employees of nursing time. Our mixed methods approach used a priori semi-structured interviews conducted with stakeholders (n = 27) including nurses, physicians, administrators, and information technology (IT) professionals between 2010 and 2011. Researchers iteratively identified facilitators and barriers of organizational readiness to change (ORC) and implementation. Additionally, an ORC survey was conducted with the stakeholders who were (n = 102) preparing for program implementation. Results Key ORC facilitators included stakeholder buy-in and improving hypertension. Positive organizational characteristics likely to impact ORC included: other similar programs that support buy-in, adequate staff, and alignment with the existing site environment; improved patient outcomes; is positive for the professional nurse role, and is evidence-based; understanding of the intervention; IT infrastructure and support, and utilization of existing equipment and space. The primary ORC barrier was unclear long-term commitment of nursing. Negative organizational characteristics likely to impact ORC included: added workload, competition with existing programs, implementation length, and limited available nurse staff time; buy-in is temporary until evidence shows improved outcomes; contacting patients and the logistics of integration into existing workflow is a challenge; and inadequate staffing is problematic. Findings were complementary across quantitative and qualitative analyses. Conclusions The model of organizational change identified key facilitators and barriers of organizational readiness to change and successful implementation. This study allows us to understand the needs and challenges of intervention implementation. Furthermore, examination of organizational facilitators and barriers to implementation of evidence-based interventions may inform dissemination in other chronic diseases.http://deepblue.lib.umich.edu/bitstream/2027.42/112820/1/13012_2013_Article_683.pd

    Mechanical Design of a 4-Stage ADR for the PIPER mission

    Get PDF
    The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design.The four 1,280 bolometer detector arrays that will fly on the balloon borne PIPER mission will be cooled by a 4-stage adiabatic demagnetization refrigerator (ADR). Two of the three mechanically independent ADR assemblies provide thermal isolation to their salt pills through Kevlar suspensions while the other provides thermal isolation to its salt pill through the use of bellows and Vespel material. The ADR integrates with the detector arrays and it sits in a large bucket Dewar containing superfluid liquid helium. This paper will describe the complex mechanical design of the PIPER ADR, and summarize the mechanical analysis done to validate the design

    Foreground simulations for the LOFAR - Epoch of Reionization Experiment

    Get PDF
    Future high redshift 21-cm experiments will suffer from a high degree of contamination, due both to astrophysical foregrounds and to non-astrophysical and instrumental effects. In order to reliably extract the cosmological signal from the observed data, it is essential to understand very well all data components and their influence on the extracted signal. Here we present simulated astrophysical foregrounds datacubes and discuss their possible statistical effects on the data. The foreground maps are produced assuming 5 deg x 5 deg windows that match those expected to be observed by the LOFAR Epoch-of-Reionization (EoR) key science project. We show that with the expected LOFAR-EoR sky and receiver noise levels, which amount to ~52 mK at 150 MHz after 300 hours of total observing time, a simple polynomial fit allows a statistical reconstruction of the signal. We also show that the polynomial fitting will work for maps with realistic yet idealised instrument response, i.e., a response that includes only a uniform uv coverage as a function of frequency and ignores many other uncertainties. Polarized galactic synchrotron maps that include internal polarization and a number of Faraday screens along the line of sight are also simulated. The importance of these stems from the fact that the LOFAR instrument, in common with all current interferometric EoR experiments has an instrumentally polarized response.Comment: 18 figures, 3 tables, accepted to be published in MNRA

    Predictions for high-frequency radio surveys of extragalactic sources

    Full text link
    We present detailed predictions of the contributions of the various source populations to the counts at frequencies of tens of GHz. New evolutionary models are worked out for flat-spectrum radio quasars, BL Lac objects, and steep-spectrum sources. Source populations characterized by spectra peaking at high radio frequencies, such as extreme GPS sources, ADAF/ADIOS sources and early phases of gamma-ray burst afterglows are also dealt with. The counts of different populations of star-forming galaxies (normal spirals, starbursts, high-z galaxies detected by SCUBA and MAMBO surveys, interpreted as proto-spheroidal galaxies) are estimated taking into account both synchrotron and free-free emission, and dust re-radiation. Our analysis is completed by updated counts of Sunyaev-Zeldovich effects in clusters of galaxies and by a preliminary estimate of galactic-scale Sunyaev-Zeldovich signals associated to proto-galactic plasma.Comment: 12 pages, 14 figures, to be published in A&

    Does improved access to diagnostic imaging results reduce hospital length of stay? A retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One year after the introduction of Information and Communication Technology (ICT) to support diagnostic imaging at our hospital, clinicians had faster and better access to radiology reports and images; direct access to Computed Tomography (CT) reports in the Electronic Medical Record (EMR) was particularly popular. The objective of this study was to determine whether improvements in radiology reporting and clinical access to diagnostic imaging information one year after the ICT introduction were associated with a reduction in the length of patients' hospital stays (LOS).</p> <p>Methods</p> <p>Data describing hospital stays and diagnostic imaging were collected retrospectively from the EMR during periods of equal duration before and one year after the introduction of ICT. The post-ICT period was chosen because of the documented improvement in clinical access to radiology results during that period. The data set was randomly split into an exploratory part used to establish the hypotheses, and a confirmatory part. The data was used to compare the pre-ICT and post-ICT status, but also to compare differences between groups.</p> <p>Results</p> <p>There was no general reduction in LOS one year after ICT introduction. However, there was a 25% reduction for one group - patients with CT scans. This group was heterogeneous, covering 445 different primary discharge diagnoses. Analyses of subgroups were performed to reduce the impact of this divergence.</p> <p>Conclusion</p> <p>Our results did not indicate that improved access to radiology results reduced the patients' LOS. There was, however, a significant reduction in LOS for patients undergoing CT scans. Given the clinicians' interest in CT reports and the results of the subgroup analyses, it is likely that improved access to CT reports contributed to this reduction.</p
    corecore